Электромагнитные волны

Электромагнитные волны представляют собой переменные электромагнитные поля, состоящие из двух неразрывно связанных и взаимно обусловленных составляющих — переменного электрического и магнитного полей. Возбуждение в некоторой области пространства переменного электрического поля приводит к возникновению в смежных областях пространства переменного магнитного поля, которое в свою очередь возбуждает переменное электрическое поле и т. д. Непременным условием существования электромагнитных волн является их распространение, которое в вакууме происходит со скоростью света, а в других средах — со скоростью, определяемой электрическими свойствами этих сред.

Свойства электромагнитных волн

Одной из важнейших характеристик электромагнитных волн, определяющих их специфические особенности, является частота электромагнитных колебаний и связанная с ней длина волны. Электромагнитные волны охватывают широкий спектр колебаний различных частот.

Широкую область электромагнитных колебаний занимают радиоволны. К радиоволнам относят колебания с частотами от 10 МГц до ~300 ГГц, что соответствует длинам волн от 30 км до 1 мм.
Радиоволны возбуждаются при помощи электрических цепей, питаемых переменными токами соответствующей частоты. Применительно к особенностям их распространения в земных условиях радиоволны различают по следующим диапазонам (табл. 1).

Таблица 1

Название диапазона Длина волны, м Частота, МГц
Сверхдлинные волны (СДВ) 100 000-10000 0.003 — 0.03
Длинные волны (ДВ) 10 000-1000 0.03 — 0.3
Средние волны (СВ) 1000-100 0.3 — 3
Короткие волны (КВ) 100-10 3 — 30
Ультракороткие волны (УКВ):
метровые 10-1 30 — 300
дециметровые 1 — 0.1 300 — 3000
сантиметровые 0.1-0,01 3000 — 30000
миллиметровые 0,01-0,001 30000-300000

К радиоволнам примыкают волны инфракрасного излучения с длиной волны до 0,77 мкм (частота до 4x105 ГГц). Источниками этих волн служат слабонагретые тела, а также оптические квантовые генераторы. Инфракрасные лучи обнаруживаются по их тепловому действию.

За инфракрасным излучением следует видимое световое, которому соответствуют длины волн от 0,77 до 0,38 мкм (частота до 8x105 ГГц). Источниками световых волн являются атомы и молекулы различных тел, излучающие эти волны под влиянием некоторых внешних воздействий (например, нагретые тела или газы, светящиеся под влиянием электрических разрядов). Мощным источником электромагнитных колебаний светового диапазона являются оптические квантовые генераторы (лазеры). Световое излучение обнаруживается глазом, а также по фотографическому, фотоэлектрическому и тепловому действиям.

Следующий диапазон электромагнитных колебаний занимают ультрафиолетовые лучи, длины волн которых лежат в пределах от 0,38 до 0,05 мкм (частота до 6×106 ГГц). Источниками их являются возбужденные атомы различных тел, испускающие лучи под влиянием некоторых внешних воздействий. Эти лучи обнаруживаются фотоэлектрическим и фотографическим методами.

За ультрафиолетовыми лучами лежит область рентгеновских и еще более коротких — гамма-лучей, испускаемых атомами и отдельными элементарными частицами вещества (электронами, протонами и др.) под влиянием различных воздействий. Все короткие волны, начиная со световых, способны ионизировать газы; этим их свойством пользуются для обнаружения наиболее коротких электромагнитных волн.

Законы распространения электромагнитной энергии тесно связаны с электрическими и магнитными свойствами среды, которые характеризуются диэлектрической проницаемостью ε, измеряемой в фарадах на метр (Ф/м), магнитной проницаемостью µ, измеряемой в генри на метр (Г/м), и удельной электрической проводимостью σ, измеряемой в сименсах на метр (См/м). Однородную среду, в которой электромагнитные волны не испытывают поглощения, отражения и рассеяния, называют свободным пространством или вакуумом. Реально такого пространства не существует, но свойства космического пространства близки к нему. Для свободного пространства σ = 0, так как в нем нет свободных электрических зарядов, обусловливающих электропроводность.

Одной из важнейших характеристик электромагнитных волн является скорость их распространения, которая в свободном пространстве одинакова для всех длин волн и является одной из фундаментальных постоянных физики. В реальной среде скорость распространения электромагнитных волн зависит как от свойств среды, так и от частоты электромагнитных колебаний. Если электромагнитные параметры среды зависят от частоты колебаний, то волны различных частот будут распространяться в такой среде с различной скоростью. Это явление называют дисперсией, а среды, обладающие дисперсией, получили название диспергирующих. Свободное пространство, как указывалось выше, является недиспергирующей средой. Атмосфера в нижней ее части (ниже ионосферы) для радиоволн представляет собой недиспергирующую среду и поэтому скорость их распространения в атмосфере не зависит от частоты. Для световых волн нижние слои атмосферы являются диспергирующей средой.

При взаимном перемещении источника электромагнитных колебаний и приемника энергии возникает эффект Доплера, заключающийся в изменении частоты принимаемых колебаний. При удалении источника колебаний частота уменьшается, а при приближении — возрастает. Эффект Доплера имеет важное значение в астрономии и применяется при определении положения искусственных космических объектов.

Распространение электромагнитных волн

Если бы Земля была идеальным проводником и ее поверхность представляла собой плоскость, а атмосфера, в которой распространяются электромагнитные волны, была идеальным диэлектриком, то распространение электромагнитных волн происходило бы без поглощения и потери энергии, так как идеальный проводник полностью отражает волну, а в идеальном диэлектрике отсутствует поглощение. В подобном случае волны распространялись бы прямолинейно и с постоянной скоростью; уменьшение напряженности поля происходило бы только за счет расширения сферического фронта волны.

В действительных условиях, а именно вблизи границы раздела двух различных неоднородных сред (атмосферы и Земли), распространение электромагнитных волн существенно отличается от указанного выше идеального случая. Неоднородность обеих сред по отношению к электромагнитным колебаниям состоит в различии и постоянной изменчивости в пространстве и во времени их электрических параметров: диэлектрической проницаемости и электрической проводимости. Магнитная проницаемость для сред, встречающихся при распространении электромагнитных воли в земных условиях, близка к единице и поэтому она почти не влияет на распространение волн.

Поверхность Земли имеет сложную форму и отличается чрезвычайным разнообразием физических свойств. Водные пространства, а также участки суши с различным рельефом и разнообразным растительным покровом, населенные пункты и искусственные сооружения характеризуются различными электрическими параметрами, по-разному влияющими на распространение электромагнитных волн. Электрические параметры почвы, кроме того, непостоянны по глубине, причем по мере приближения к уровню грунтовых вод электрическая проводимость почвы повышается. Однако на распространение радиоволн существенно влияет только сравнительно тонкий поверхностный слой почвы.

Электрические параметры в общем случае зависят как от свойств среды, так и от длины волны взаимодействующих со средой электромагнитных колебаний. Так, для длинных волн почвы по электрическим параметрам приближаются к идеальному проводнику. Поэтому длинные волны отражаются от земли без заметного поглощения. При уменьшении длины волны проводимость почвы уменьшается и почва по свойствам приближается к диэлектрику. Вследствие этого короткие волны, распространяющиеся вблизи поверхности земли, заметно поглощаются уже на расстоянии нескольких десятков километров. Поглощение волн сильнее над влажной почвой и в особенности над морем. Однако поглощение становится существенным лишь при распространении радиоволн вблизи поверхности земли, на расстоянии порядка длины волны. При прохождении на больших расстояниях от поверхности радиоволны практически не испытывают поглощения почвой.

Электромагнитные колебания светового диапазона с помощью оптических систем светодальномеров излучаются узким направленным пучком. Непосредственное влияние Земли в этом случае не имеет места, так как световой пучок проходит на значительном (по сравнению с длиной волны) расстоянии от поверхности; происходит лишь искривление пути световой волны за счет изменения показателя преломления атмосферы.

Распространение радиоволн в зависимости от вида и ширины диаграммы направленности излучающей антенны захватывает значительное пространство. Однако при этом существенную роль играет лишь некоторая ограниченная область, внутри которой распространяются волны, наиболее эффективно действующие на приемное устройство.

Различия распространения электромагнитных волн

Изложенное свидетельствует о многообразии и сложности факторов. определяющих распространение радио- и световых волн в земных условиях. Ниже приведены характерные особенности распространения электромагнитных волн различных диапазонов.

Длинные волны при распространении вдоль поверхности Земли вследствие дифракции частично огибают земной шар и сравнительно слабо поглощаются. Поэтому поверхностная волна распространяется далеко за пределы прямой видимости (до 3000 км и более). Отражаясь от относительно устойчивых слоев ионосферы, длинные волны характеризуются постоянством условий распространения пространственной волны. Под действием флуктуаций в ионосфере напряженность поля пространственной волны меняется сравнительно слабо. Недостатком этого диапазона воли является высокий уровень атмосферных помех.

Распространение средних волн сопровождается резкими суточными колебаниями напряженности поля вместе приема. Днем преобладает поверхностная волна, которая частично огибает земной шар; однако вследствие значительного поглощения ее полупроводящей поверхностью Земли распространение поверхностной волны происходит не далее 1000 км. В ночное время усиливается пространственная волна, фаза колебаний в которой вследствие флуктуаций электронной концентрации в ионосфере непрерывно изменяется. Это вызывает изменение разности фаз накладывающихся поверхностной и пространственной волн, что приводит к колебаниям амплитуды результирующего поля, к ослаблениям и полному исчезновению приема, называемому замиранием.

Короткие волны распространяются на дальние расстояния главным образом пространственной волной, отраженной от ионосферы. Поле этой волны из-за изменений в ионосфере неустойчиво; возможно и замирание сигналов. Поверхностная волна вследствие значительного поглощения землей быстро затухает. Для этого диапазона характерно появление зоны молчания на некотором расстоянии от передатчика, в которой уверенный прием невозможен. Появление зоны молчания объясняется быстрым затуханием поверхностной волны и невозможностью, по условиям отражения, попадания в нее пространственной волны.

Ультракороткие волны распространяются почти прямолинейно, незначительно огибая выпуклость Земли за счет атмосферной рефракции и в меньшей степени (только метровые волны) за счет дифракции. Заметное отражение от ионосферы происходит только на метровых волнах (длиннее 4-5 м). Более короткие волны не могут попадать на землю пространственной волной и дальность их распространения определяется поверхностной волной, которая сравнительно быстро затухает за счет поглощения землей и атмосферой (в особенности для сантиметровых и миллиметровых волн). Атмосферные помехи в этом диапазоне незначительны.

Инфракрасные и световые волны распространяются почти прямолинейно. Их путь искривляется только за счет атмосферной рефракции. При распространении эти волны испытывают сильное поглощение и рассеяние в атмосфере, в особенности, если последняя насыщена жидкими и газообразными частицами воды и пылью. При помощи оптических систем световые и инфракрасные волны можно сконцентрировать в узкий луч большой мощности, в особенности когда источником излучения является лазер. Подстилающая поверхность не оказывает влияния на распространение этих волн. Наличие фона за счет рассеянного света атмосферы требует повышенной мощности источников света и соответствующей оптики, в противном случае применение световых волн в светлое время суток ограниченно. Наибольшая точность измерения направлений и расстояний при геодезических работах в настоящее время обеспечивается именно в диапазоне световых волн.

Добавить комментарий

Ваш адрес email не будет опубликован.