Оптические телескопы — виды, классификация, оптические схемы

Существует два основных вида оптических телескопов — линзовые, или рефракторы, и зеркальные, или рефлекторы. У рефракторов объектив, собирающий световые лучи, изготовлен из стеклянных линз, а у рефлекторов объективом служит вогнутое зеркало.

Экскурсанты, увидевшие в астрономической обсерватории крупный телескоп, обычно спрашивают, во сколько раз он увеличивает, и с удивлением слышат в ответ, что основное назначение телескопов состоит не в достижении большого увеличения, а в том, чтобы собрать как можно больше световой энергии от небесного тела.

От небесных тел к Земле приходят параллельные лучи света, из которых в глаз попадает лишь ничтожная доля, поскольку диаметр зрачка очень мал и не превышает 6—7 мм. Объектив телескопа, имея значительные размеры, воспринимает больший световой поток и, концентрируя его, позволяет видеть слабые небесные объекты, недоступные невооруженному глазу.

Рефракторы (линзовые)

Так как учащиеся средних школ при наблюдениях небесных светил пользуются в основном телескопами-рефракторами, то мы опишем их достаточно подробно, чтобы наблюдатели смогли самостоятельно определить основные характеристики и возможности своих телескопов.

Любые оптические линзы обладают рядом недостатков. Чтобы их значительно снизить, объектив телескопа-рефрактора изготавливают из двух (реже — из трех) линз небольшой кривизны, одной — двояковыпуклой и второй — плоско-вогнутой, исправляющей оптические недостатки первой линзы.

Прямая линия (ОФ), проходящая через центр объектива и перпендикулярная поверхностям линз, называется оптической осью объектива (телескопа). Падающие на объектив световые лучи (С), параллельные оптической оси, преломляются в нем и сходятся в фокусе (Ф) объектива — точке, лежащей на оптической оси и отстоящей от центра объектива на определенном расстоянии, называемом фокусным расстоянием объектива (F = ОФ) или телескопа.

Параллельные лучи (A, В), падающие на объектив под некоторым углом к его оптической оси, тоже преломляются и сходятся, но уже не в фокусе, а в точках (а, b), расположенных в фокальной плоскости, проходящей через фокус перпендикулярно оптической оси. Поэтому изображения (ab) протяженных объектов (АВ) с ощутимыми угловыми размерами (р) лежат в фокальной плоскости телескопа и получаются перевернутыми.

Таким образом, одной из основных характеристик телескопа является фокусное расстояние F его объектива, от которого зависят линейные размеры / изображения протяженных небесных объектов (Солнца, Луны, планет, туманностей и др.) в фокальной плоскости телескопа.

Вторая основная характеристика телескопа — это диаметр D объектива, так как световой поток, собираемый объективом, пропорционален квадрату его диаметра.

Весьма существенна третья характеристика телескопа, его относительное отверстие (часто неправильно называемое светосилой):

A=D/F=1:(F/D)

Чем меньше отношение F/D, тем более ярким получается изображение протяженного объекта в фокальной плоскости телескопа. Действительно, с уменьшением фокусного расстояния объектива линейные размеры изображения протяженного объекта тоже уменьшаются, а при неизменном диаметре объектива воспринимаемый им световой поток остается прежним, поэтому изображение объекта становится более ярким. Однако уменьшать фокусное расстояние объектива можно до разумных пределов так, чтобы размеры изображения были не очень малы и различимы. Для детального изучения протяженных объектов желательны длиннофокусные телескопы, дающие большее увеличение. Но тогда для сохранения достаточной яркости изображения необходимо увеличить диаметр объектива, что возможно лишь в определенных пределах из-за трудностей его изготовления. Поэтому у крупных телескопов-рефракторов диаметр объектива обычно не превышает 70 см, а относительное отверстие заключено в пределах от 1:16 до 1:10.

При визуальных наблюдениях фокальное изображение светила рассматривается в окуляр (от лат. ocularis — глазной и oculus — глаз), состоящий из двух небольших короткофокусных линз, поэтому протяженное светило представляется увеличенных размеров. Увеличение телескопа W=F/f где F — фокусное расстояние объектива, а f — фокусное расстояние окуляра.

К каждому телескопу прилагается несколько окуляров для наблюдений с различными увеличениями, которые необходимо подбирать в зависимости от условий. Слабо светящиеся объекты, например кометы, туманности и звездные скопления, следует наблюдать с наименьшим увеличением, чтобы они выглядели яркими. Планеты и Луну можно наблюдать с наибольшим увеличением, допустимым атмосферными условиями. Однако часто бывает так, что при неспокойной или перенасыщенной влагой земной атмосфере планеты и Луна видны значительно лучше с меньшим увеличением.

Но даже при исключительно хороших атмосферных условиях невозможно добиться от телескопа произвольно большого увеличения путем применения окуляров с очень малым фокусным расстоянием, так как начнут отрицательно сказываться оптические недостатки линз. Поэтому каждый телескоп обладает наибольшим допустимым, или предельным, увеличением Wm=2D где диаметр объектива D выражен в миллиметрах, но считается безразмерной величиной.

Диаметр объектива определяет разрешение (или разрешающую способность) телескопа, показывающее наименьшее угловое расстояние, четко различимое в телескоп, в частности возможность видеть раздельно две звезды, расположенные на небе очень близко друг к другу (тесные пары звезд) Разрешение телескопа обозначается греческой буквой Θ (тэта).

Из физики известно, что разрешающая способность телескопа обратно пропорциональна диаметру объектива и прямо пропорциональна длине электромагнитных волн, воспринимаемых телескопом.

В астрономии видимая яркость, или блеск, небесных светил выражается в звездных величинах, причем чем меньше блеск светила, тем больше его звездная величина, обозначаемая латинской буквой m. В идеальных условиях, т. е. в темную безоблачную и безветренную ночь, невооруженный человеческий глаз различает звезды 6m, а в телескоп же видны более слабые звезды, большей звездной величины. Поэтому каждый астроном-наблюдатель обязан знать наименьший блеск звезд, различимых в его телескоп при идеальных условиях.

Нужно твердо помнить, что наблюдать Солнце непосредственно в телескоп без защиты глаз нельзя, так как сконцентрированный телескопом солнечный свет мгновенно их сожжет. При наблюдениях Солнца необходимо укрепить перед объективом очень темный светофильтр (темное стекло). Но лучше и безопаснее всего наблюдать Солнце на белом экране, укрепленном за окуляром; тогда светофильтр не нужен.

Необходимость изучения слабых небесных светил заставляет делать линзовые объективы больших размеров. Но изготовление крупных линз настолько сложно, что из всех существующих в мире рефракторов только один имеет объектив диаметром 102 см (F = 1940 см), а у второго по величине — диаметр 91 см (F = 1730 см). Оба объектива изготовлены американским оптиком А. Кларком (соответственно в 1897 и в 1886 гг.) и установлены в Йерксской и Ликской обсерваториях (США). Все дальнейшие попытки изготовить линзовые объективы хотя бы таких же размеров окончились неудачей. В Советском Союзе самый крупный телескоп-рефрактор установлен в Главной астрономической обсерватории Академии наук; диаметр его объектива равен 65 см, а фокусное расстояние F = 1040 см.

Рефракторы, предназначенные для фотографирования небесных объектов, называются астрографами. Фотографирование ведется в фокальной плоскости объектива, поэтому в окулярной части телескопа вместо окуляра укрепляется фотокамера. Астрографы используются, как правило, для фотографирования небесных объектов с целью определения их видимых положений на небе и последующего изучения их движения. Существуют и двойные астрографы, с двумя раздельными объективами, позволяющими одновременно фотографировать с различными экспозициями.

Рефлекторы

Для исследования физической природы небесных тел предпочтительнее телескопы-рефлекторы, у которых объективом служит вогнутое параболическое зеркало небольшой кривизны, изготовленное из толстого стекла и покрытое тонким слоем порошкообразного алюминия, напыляемого на стекло под большим давлением.

Световые лучи, отраженные от зеркала, собираются в его фокальной плоскости, где изображения объектов тоже получаются перевернутыми. Фокальная плоскость выводится в сторону окуляра посредством дополнительного небольшого либо плоского (предложено Ньютоном в 1671 г., либо выпуклого зеркала (предложено Кассегреном в 1672 г.), которое значительно удлиняет фокусное расстояние зеркального объектива (схемы «а» и «б» на рисунке ниже).

Советский оптик Д. Д. Максутов (1896—1964 гг.) создал рефлектор, известный под названием менискового телескопа. В нем зеркальный объектив имеет сферическую форму (проще в изготовлении), а его оптические недостатки исправляются тонкой линзой малой кривизны (мениском), установленной впереди объектива (схема «в» на рисунке). Роль дополнительного зеркала выполняет небольшое алюминиевое пятно, напыленное на внутренней поверхности мениска. Телескопы Максутова изготовлены в нескольких вариантах — от школьного типа с объективом диаметром 70 мм до крупных инструментов диаметром до 1 м.

Изготовление крупных зеркальных объективов тоже требует колоссального труда. Зеркала, в отличие от линз, практически не поглощают света, что особенно ценно при изучении физической природы небесных тел. Поэтому современные крупные телескопы снабжаются зеркальными объективами диаметрами, как правило, от 1,5 до 4 м и фокусным расстоянием от 9 до 12 м.

Крупнейшие оптические телескопы

Телескоп-рефлектор с диаметром зеркала 6 м и фокусным расстоянием 24 м был изготовлен в СССР по проекту и под руководством Б. К. Иоаннисиани. Зеркало весит 420 кг, а стеклянная заготовка, из которой оно изготовлено, весила 700 кг и после отливки при температуре в 1600 °C охлаждалась 736 суток! Этот уникальный телескоп, общим весом в 8500 кг, установлен осенью 1974 г. в специальной астрофизической обсерватории Академии наук СССР на горе Пастухова (Ставропольский край) высотой 2070 м над уровнем моря. Система дополнительных зеркал дает возможность увеличивать фокусное расстояние этого телескопа до 350 м. Разрешение телескопа составляет 0,02″, и он позволяет фотографировать звезды до 24m, т. е. в 4 млрд. раз более слабые, чем яркие звезды, видимые невооруженным глазом. Он долгое время был крупнейшим телескопом в мире.

Крупнейший в мире телескоп с цельным зеркалом — Большой бинокулярный телескоп, расположенный на горе Грэхэм (США, штат Аризона), он был построен в 2005 году. Диаметр его обоих зеркал, обеспечивающих стереоскопическое изображение, — 8,4 метра.
Большой Канарский телескоп с диаметром зеркала 10,4 м (36 шестиугольных сегментов) был открыт 13 июля 2007 года. Это самый большой оптический телескоп в мире.

Все большие оптические телескопы смонтированы на специальных установках, в башнях, покрытых куполами с открывающимися створками, и во время наблюдений медленно поворачиваются электромоторами в направлении суточного вращения неба, с той же скоростью (15° за 1 ч), что позволяет проводить длительные экспозиции. Контроль за равномерным поворотом телескопа осуществляется специальными компьютерами.

Добавить комментарий

Ваш e-mail не будет опубликован.