Круговорот веществ в биосфере

Биосферный и биологический круговороты

Все вещества на нашей планете находятся в состоянии постоянного круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: один, большой, охватывающий всю биосферу, называется биосферным, а другой — малый — протекает внутри экосистемы и называется биологическим.

Биосферному круговороту веществ предшествует геологический, который обусловливает разрушение, миграцию и аккумуляцию химических соединений и веществ. В такой миграции ведущая роль принадлежит солнечной энергии, от которой зависят скорость и масштабность развития экзогенных процессов. В них главенствующая роль принадлежит гравитационным и особенно термическим свойствам поверхности суши и водной оболочки, которые поглощают и отражают солнечные лучи, обладают теплопроводностью и теплоемкостью. Неустойчивый гидротермический режим Земли вместе с планетарной системой циркуляции атмосферы обусловил геологический круговорот веществ, который вместе с эндогенными процессами — спредингом, субдукцией, вулканизмом, тектоническими движениями — вызывает формирование и развитие океанов и континентов. Продукты выветривания транспортируются воздушными массами и водными потоками. С появлением биосферы в большой круговорот веществ включились продукты жизнедеятельности организмов, и, таким образом, геологический круговорот приобрел совершенно новые черты. Он становится поставщиком живым организмам питательных веществ, во многом определяет условия их существования и при этом наряду с механической и химической дифференциацией и аккумуляцией вещества стала осуществляться биологическая дезинтеграция и биологическая аккумуляция вещества.

Большой круговорот веществ в биосфере характеризуется двумя важными особенностями. Во-первых, он осуществляется на протяжении всей истории существования биосферы, т. е. начиная по крайней мере с 3,8—4,0 млрд. лет назад. Во-вторых, он представляет собой современный планетарный процесс, играющий важную роль в дальнейшем существовании и развитии биосферы.

Перемещающееся в геологическом круговороте неорганическое вещество является своеобразным резервным фондом для биологической ветви биосферного круговорота. Этот резервный фонд сосредоточен в атмосфере в виде газов и термодинамически активных веществ, в воде — в виде растворенных химических элементов и их соединений, в литосфере — в виде минеральных и органоминеральных веществ, часть из которых находится в верхних горизонтах и почвах. С атмосферой и гидросферой связан в основном транзитный цикл круговорота, а с литосферой и частично с гидросферой — аккумулятивный, или осадочный.

Малый, или биологический, круговорот веществ развивается на фоне геологического, охватывающего всю биосферу. Хотя он происходит внутри отдельных экосистем, он не замкнут, а это вызвано тем, что в экосистему вещество и энергия поступают извне.

Растения, животные и почвенный покров на суше образуют сложную глобальную систему, которая формирует биомассу, связывает и перераспределяет солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие элементы, участвующие в жизнедеятельности организмов, которые называются биогенными элементами. Растения, животные и микроорганизмы водной среды, которые выполняют ту же функцию связывания и перераспределения солнечной энергии и биологического круговорота веществ, образуют другую глобальную систему.

Особенность биологического круговорота заключается в течении трех противоположных, но взаимосвязанных процессов: формирование органического вещества, его разрушение и перераспределение. Начальный этап возникновения органического вещества обусловлен жизнедеятельностью продуцентов и связан с фотосинтезом растений, т. е. с образованием органического вещества из углекислого газа, воды и простых минеральных веществ с использованием солнечной энергии. Растения извлекают из почвы в растворенном виде серу, фосфор, кальций, калий, магний, марганец, кремний, алюминий, медь, цинк и другие жизненно необходимые элементы и микроэлементы. Консументы первого порядка, т. е. растительноядные животные, поглощают созданное органическое вещество и вместе с пищей растительного происхождения усваивают необходимые для жизнедеятельности биогенные элементы. Консументы второго порядка — хищники— питаются растительноядными животными и таким образом употребляют в пищу органические вещества более сложного состава, включая белки, жиры, аминокислоты, а вместе с ними также необходимые для последующей жизнедеятельности микроэлементы.

В процессе разрушения микроорганизмами органического вещества растительного или животного происхождения в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениями. Таким образом, начинается новый цикл биологического круговорота.

В отличие от большого малый круговорот имеет несомненно меньшую, но неодинаковую продолжительность. Различают сезонные, годовые, многолетние и вековые малые круговороты. При рассмотрении биологического круговорота веществ основное внимание уделяют годовому ритму, определяемому годичной динамикой развития растительного покрова.

Обмен веществом и энергией, осуществляющийся между различными структурными частями биосферы и определяющийся жизнедеятельностью микроорганизмов, называется биогеохимическим циклом. Это понятие ввел в мировую науку В. И. Вернадский, и только после этого перестало существовать представление о круговороте веществ как о замкнутой системе. Все биогеохимические циклы составляют современную динамическую основу существования жизни. Они взаимосвязаны между собой, и в то же время каждый из них играет свою неповторимую роль в эволюции биосферы.

Отдельные циклические процессы вместе с тем не являются полностью обратимыми. Одна часть элементов и соединений в процессе миграции и превращения рассеивается или связывается в новых системах и, следовательно, выпадает из круговорота. Другая часть веществ способна возвратиться в круговорот, но довольно часто он приобретает новые качества, и при этом изменяется количественный состав веществ, участвующих в круговороте. Часть веществ вследствие геологических процессов, в частности субдукции, может извлекаться из круговорота и, перемещаясь в нижние горизонты литосферы, видоизменяться, а часть, в основном в газообразном состоянии, — удаляться из атмосферы в космическое пространство.

Продолжительность круговоротов тех или иных веществ в разных системах чрезвычайно различна. Установлено, что полный оборот углекислого газа в атмосфере через фотосинтез составляет около 300 лет, кислорода атмосферы и тоже через фотосинтез — 2000-2500 лет, азота атмосферы через биологическую фиксацию и фотохимическим путем — примерно 100 млн. лет, а воды через испарение — около 1 млн. лет.

В биосферном и биологическом круговоротах участвует огромное количество химических элементов и соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы, азота и фосфора. Оксиды первых трех являются главными загрязнителями атмосферы, а фосфаты — загрязнителями водных бассейнов. Большое значение имеет знание круговоротов ряда токсичных элементов и, в частности, ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина, который выступает как загрязнитель почвы и атмосферы). В круговороты вовлекаются многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые наносят вред биоте и здоровью человека.

Круговорот углерода

Этот круговорот — один из важнейших круговоротов веществ в биосфере. Изменения глобального масштаба круговорота углерода, вызванные антропогенной деятельностью, приводят к неблагоприятным для биосферы последствиям. С процессом круговорота углерода напрямую связаны содержание кислорода в атмосфере и его круговорот в биосфере, изменения климата и погодных условий на земной поверхности и т. д.

Углерод участвует в большом и малом круговоротах вещества. Его соединения в биосфере постоянно возникают, испытывают превращения и разлагаются. Основной путь миграции углерода — от углекислого газа в атмосфере в живое вещество и из живого вещества в атмосферную углекислоту. При этом часть углерода выходит из круговорота, растворяясь в гидросфере и осаждаясь в форме карбонатных пород, а часть остается в почве.

В биологическом круговороте углерода выделяют три стадии. На первой стадии зеленые растения поглощают углекислый газ из воздуха, создают органическое вещество, главной составной частью которого является углерод. В дальнейшем животные, питаясь растениями, из содержащихся в органическом веществе соединений, в том числе соединений углерода, продуцируют другие соединения. На конечной стадии после отмирания организмов растительного или животного происхождения их мертвые ткани разрушаются микроорганизмами, которые освобождают углерод. Он снова попадает в атмосферу в форме углекислого газа. Кроме того, источником углерода является углекислый газ, поступающий в атмосферу при дыхании растений в темное время суток, выделяемый при дыхании животных и человека, а также поступающий в атмосферу в результате вулканических извержений и при выветривании горных пород, содержащих углерод в связанном виде.

Часть углерода накапливается в виде омертвевших органических веществ и там, где отсутствуют условия для их разложения, т. е. в восстановительных условиях. В этом случае органический углерод переходит в ископаемое состояние и накапливается в виде торфа, нефти и газа и в дальнейшем перерабатывается в каменный уголь и горючие сланцы, а при метаморфизме переходит в графит.

Рассматривая глобальное преобразование органического углерода и интенсивное его захоронение в болотах, пойменно-старичных условиях, лагунах, манграх, морских бассейнах и пресноводных водоемах, надо признать, что данный процесс осуществлялся на Земле в период всей биологической эволюции биосферы, причем этот процесс в течение длительного геологического времени протекал с большой интенсивностью, но с различной скоростью. В геологическом прошлом, когда существовала ландшафтно-климатическая обстановка, благоприятствующая развитию растительного покрова, а в атмосфере концентрация углекислого газа почти на порядок превышала современную, избыток органического углерода захоронялся в недрах Земли, образовав месторождения полезных ископаемых. Общая масса углерода, которая захоронена в форме горючих полезных ископаемых, оценивается более чем в 100 000 трлн. т.

Современная растительность, включая водоросли, ежегодно продуцирует около 1,5 трлн. Т. углерода. Согласно расчетам М. И. Будыко, весь запас углекислого газа в атмосфере, если бы он не возобновлялся, был бы исчерпан растениями за восемь лет.

Кроме биосферы углекислый газ продуцируется косными системами, в частности вулканическими извержениями. Весьма существенным источником и потребителем углекислоты выступают водные массы гидросферы. Углекислый газ представлен в ней в виде разбавленных растворов угольной кислоты и главным образом в форме гидрокарбонатов металлов. Существует глобальный обмен между атмосферой и гидросферой не только энергией, но и веществом в форме газов. Повышение концентрации и парциального давления СO2 в атмосфере, региональное или сезонное охлаждение вод — все это сопровождается немедленным увеличением концентрации углекислого газа в воде и растворов гидрокарбоната кальция. Необходимые количества углекислоты изымаются из атмосферы.

Известно, что многие гидробионты, поглощая углекислый кальций, строят свои скелеты, а после смерти формируют донные известковые отложения, в дальнейшем преобразуемые в процессе литогенеза в толщи органогенных известняков. Осаждаясь, карбонат кальция связывает часть углекислого газа в форме известковых осадков на дне Мирового океана и пресноводных водоемов, но при этом часть углекислоты вновь возвращается в атмосферу.

Между атмосферным углекислым газом и углекислым газом, растворенным в Мировом океане, существует равновесие. Уменьшение углекислого газа в атмосфере неизбежно вызывает дегазацию вод океана и приводит к поступлению углекислого газа в атмосферу. В качестве нарушителя равновесного процесса нередко выступает температурный фактор.

Постоянно действующим фактором поглощения углекислого газа из атмосферы, а также газов, растворенных в водной среде, выступает фотосинтез в гидросфере. Причем этот процесс протекает с соответствующим освобождением кислорода.

Таким образом, Мировой океан и атмосфера представляют собой единую систему, которая регулирует взаимное распределение диоксида углерода. Ряд исследователей считают, что в современную эпоху, несмотря на повышение концентрации углекислого газа в атмосфере, Мировой океан продолжает эффективно выполнять функцию захвата и связывания избыточного количества углекислого газа, переводя его в растворимые бикарбонаты и осаждая в виде карбоната кальция, а также путем образования биомассы живого вещества с карбонатным скелетом.

Круговорот углерода продолжает контролировать содержание кислорода в атмосфере. При этом общую массу кислорода М. И. Будыко и А. Б. Ронов оценивают в 1,2*106 млрд. т. Общепланетарный расход кислорода на сжигание органического топлива составляет около 15 млрд. т ежегодно. Это почти на порядок меньше, чем ежегодное поступление в атмосферу кислорода, освобожденного при фотосинтезе (140—200 млрд. т.). Выделяемый кислород почти полностью используется при дыхании организмов и минерализации отмершей органической массы, а также частично консервируется в литосфере в виде оксидов металлов и соединений.

На сжигание минерального топлива используется кислород, уже накопленный атмосферой, и ежегодное его уменьшение составляет примерно одну десятитысячную часть его массы в атмосфере. Полное сжигание углеродного топлива уменьшает содержание кислорода в атмосфере только на доли процента. Значительные изменения массы кислорода могут проявиться за очень длительные промежутки времени, исчисляемые миллионами лет. Исходя из этого считают, что наибольшую опасность для биосферы представляет нарушение круговорота углерода.

В современную эпоху, в отличие от прошлых геологических периодов, поток углерода в атмосферу увеличился за счет антропогенных выбросов, а растительность полностью его усвоить оказалась не в состоянии. Вследствие этого снизилось самоочищение атмосферы от оксида углерода, т.е. от угарного газа.

Самоочищение воздуха от оксида углерода происходит в результате миграции СО в верхние слои атмосферы, где в присутствии диоксида азота и озона он окисляется до СO2. Установлено, что если бы прекратилось постоянное поступление в атмосферу техногенного оксида углерода, то она бы очистилась от него в течение нескольких лет.

Круговорот азота

Азот, как и углерод, участвует в большом и малом круговоротах. Источником азота в биологическом круговороте являются нитраты и нитриты, которые поглощаются растениями из почвы и воды. У растений отсутствует возможность извлекать азот непосредственно из атмосферы. Растительноядные животные создают из аминокислот растительных белков протоплазму своих клеток. Гнилостные бактерии переводят соединения азота в отмерших остатках растений и животных в аммиак. Затем нитрифицирующие бактерии превращают аммиак в нитриты и нитраты. Часть азота благодаря денитрифицирующимся бактериям вновь поступает в атмосферу. Если бы отсутствовал дополнительный источник пополнения запасов азота в почве, то произошло бы азотное голодание растений и как следствие — разрушение биосферы, так как в процессе денитрификации свободный азот выводится из биологического цикла.

Существуют два пути вовлечения азота атмосферы в биологический круговорот. Один из них связан с атмосферными осадками, а второй — с биологической фиксацией азота прокариотными организмами.

В результате вулканических извержений, а также происходящих фотохимических реакций и возникающего при грозовых разрядах и ионизации электрического окисления азота в атмосфере всегда присутствуют оксиды азота, которые вместе с атмосферными осадками попадают в почвенные слои. Кроме того, в атмосферном воздухе всегда содержится аммиак. В нормальном состоянии он составляет 0,02—0,04 мг/м3, но его количество возрастает при грозовых разрядах. Подсчитано, что суммарное поступление азота в почву таким путем составляет 10—15 кг/га.

Биологическая фиксация азота связана с деятельностью прокариот. Они способны превращать биологически бесполезный газообразный азот в соединения, необходимые для корневого питания растений. Фиксация азота требует больших затрат энергии, которая расходуется в основном на разрыв тройной связи в молекуле азота, чтобы затем с добавлением водорода из воды превратить ее в две молекулы аммиака.

Азот фиксируется свободно живущими аэробными (Asotobacter) и анаэробными (Clostridium) бактериями, некоторыми сине-зелеными водорослями (Anabaena, Nostos), симбиотическими клубеньковыми бактериями бобовых растений (Rhizobium) и другими микроорганизмами. Особенно активны клубеньковые бактерии бобовых культур. Общее количество азота, фиксированного ими, может достигать 350 кг/га, а это в 100 раз выше показателя у свободно живущих азотфиксирующих организмов.

Основная часть фиксированного азота почвы поглощается растениями, но часть его соединений выносится в реки и поступает в водоемы, в том числе в моря. Больше всего солей аммония, нитратов и нитритов находится в водах устьев рек и у берегов морей, в глубинных частях водоемов суши, куда они поступают в процессе гниения органического вещества. Находящийся в поверхностных водах азот потребляется растительными микроорганизмами. Потеря азота непрерывно восполняется поступлением его с суши, в результате постоянного перемешивания вод, выпадения аммиака из атмосферы и разложения остатков растений и животных в поверхностных частях водоемов.

Антропогенные нарушения круговорота азота в биосфере связаны со сжиганием минерального топлива в наземном и воздушном транспорте, на тепловых электростанциях и с производством азотных удобрений. Поступление в атмосферу азота антропогенного происхождения в 70-е годы XX в. было в 15 раз, а в 80-е годы — в 12 раз меньше, чем от естественных источников. Однако в связи с развитием промышленности и транспорта количество техногенного азота в атмосфере имеет тенденцию к увеличению.

При сжигании топлива в атмосферу поступает дополнительное количество оксидов азота, которые участвуют в фотохимических реакциях. Одна из таких реакций приводит к возникновению фотохимического смога, содержащего формальдегид и другие токсичные компоненты.

Загрязнение стратосферы оксидами азотами в результате полетов самолетов, космических и простых ракет нарушает естественный круговорот азота и приводит к нарастающему разрушению озонового экрана. В тропосфере оксиды азота, контактируя с парами воды, образуют аэрозоли азотной кислоты, которая вместе с аэрозолями серной кислоты выпадает в форме кислотных дождей.

Существенные изменения в круговорот азота вносят производство и применение азотных удобрений. В XX в. химический синтез азотных удобрений на основе связывания азота атмосферы стал главным источником питания культурных растений. В мире ежегодно вносится свыше 40 млн. т. азота в виде минеральных удобрений. Кроме того, в почвенный покров и водные системы поступает трудно учитываемое количество азота с животноводческих комплексов и фермерских хозяйств.

Круговорот фосфора

Биологическое значение фосфора в жизнедеятельности организмов исключительно велико. Его соединения входят в состав нуклеиновых кислот, клеточных мембран, систем переноса энергии, в состав мозга и костной ткани. Содержание фосфора в тканях растений составляет 250—350, морских животных — 400—1800, наземных животных — 170—4400, бактерий — около 3000 мг на 100 г сухого вещества. Как и углерод, фосфор участвует в биологическом и геологическом круговороте вещества.

Резервуаром фосфора в биологическом круговороте служит литосфера, в частности фосфорсодержащие горные породы, какими являются фосфориты, апатиты, нефелиновые сиениты. В процессе выветривания соединения фосфора попадают в почвенный покров, выносятся поверхностными водами в конечные бассейны стока, где они или медленно оседают на дно и литифицируются, или рассеиваются глубинными водами.

Из почвы фосфор извлекается растениями в виде растворимых фосфатов, которые поглощаются с почвенными растворами и превращаются в ионы РO4-2. Скорость усвоения растениями фосфора зависит от кислотности почвенного раствора. В щелочной среде фосфаты кальция и натрия практически нерастворимы, а в нейтральной — малорастворимы. По мере повышения кислотности они превращаются в хорошо растворимую фосфорную кислоту. Находящийся в растительности фосфор переходит к животным, потребляющим растительную пищу.

Органический фосфор, находящийся в растительном опаде, отмерших растительных и животных остатках в результате бактериальных преобразований в почве, трансформируется в фосфаты. Воздействующие на них фосфаторазрушающие бактерии продолжают биологический круговорот фосфора, переводя его в растворимую форму, которая, попадая в водную среду, принимает участие в геологическом круговороте.

Круговорот фосфора в биосфере не замкнут, так как часть его поступает в литосферу. Лишь небольшое количество фосфора безвозвратно теряется при геологических процессах, а часть — аккумулируется вместе с осадками. С речными стоками, согласно сделанным подсчетам, в Мировой океан поступает ежегодно около 3-4 млн. т. фосфора, который исключается из круговорота.

В морях и океанах фосфор концентрируется в виде фосфатных конкреций, которые в процессе седиментогенеза с течением времени превращаются в фосфориты. В зоне апвеллинга, когда происходит подъем глубинных вод, фосфор вместе с другими биогенными элементами и питательными веществами выносится на поверхность и поэтому зоны апвеллинга необычайно богаты организмами.

В почве и природных водах фосфор всегда находится в дефиците. Соотношение фосфора и азота в природных водах составляет в среднем 1:23 (в реках и ручьях 1:28), в биомассе 1:16. Это определенным образом тормозит биологическую продуктивность Земли. Хотя часть фосфора из Мирового океана естественным путем возвращается на сушу птицами и с выловленной рыбой, общий объем возврата фосфора явно меньше количества выноса его в гидросферу.

В течение XX в. в результате хозяйственной деятельности человека цепочка круговорота фосфора в биосфере оказалась нарушенной. Этому способствовали производство фосфорных удобрений и широкое их применение в сельском хозяйстве, получение в промышленных масштабах различных фосфорсодержащих препаратов, производство продовольствия и кормов, развитие рыбного промысла, добыча морских моллюсков и водорослей. Эти действия прямым образом отразились на круговороте фосфора и привели к перераспределению содержания фосфатов на суше и в гидросфере. Наблюдается также крайне неравномерная концентрация фосфора на земной поверхности. Его больше в местах развития сельского хозяйства, где происходит малообратимая аккумуляция органических соединений фосфора. Эрозия почв, смыв удобрений, органических отходов и экскрементов поверхностными водами, сбросы канализационных стоков приводят к сильнейшему фосфорному загрязнению рек, озер и прибрежных областей Мирового океана. Происходит фосфатизация почв, рек, водоемов суши, прибрежных участков морей, особенно в области дельт, заливов и эстуариев.

Круговорот серы

Сера имеет важное биологическое значение, так как она входит в состав аминокислот, белков и других сложных органических соединений. В пересчете на сухое вещество в наземных растениях содержание серы составляет 0,3%, у наземных животных — 0,5, в морских растениях — 1,2, у морских животных — до 2%.

В большом, геологическом, круговороте сера переносится с океана на материки атмосферными осадками и возвращается с речным стоком обратно в Мировой океан. Одновременно ее запасы пополняются за счет вулканической деятельности и при процессах выветривания. Вулканы выбрасывают серу в виде триоксида (серного ангидрида SO3), диоксида (сернистого газа SO2), сероводорода Н2S и элементарной серы. В литосфере имеются в большом количестве сульфиды различных металлов: железа, цинка, свинца, меди и др. В биосфере сульфидная сера с участием многочисленных микроорганизмов окисляется до сульфатной серы SO4-2, которая находится в почве и водоемах. В малом круговороте сульфаты поглощаются растениями. Растительноядные животные получают необходимую для жизнедеятельности серу. В результате сложных превращений и видоизменений при разрушении остатков организмов, растительного опада сера попадает в почвенные воды и в илы водоемов суши, морей и океанов. При разрушении белков с участием микроорганизмов образуется сероводород, который в дальнейшем окисляется или до элементарной серы, или до сульфатов. В первом случае формируются залежи чистой серы, а во втором — залежи гипса. При разрушении последних во время добычи или выветривания сера вновь вовлекается в круговорот.

Сероводородное заражение вод Черного моря — это результат жизнедеятельности серо-разлагающих бактерий в анаэробных условиях. Сероводород нередко возникает в пресноводных водоемах, загрязненных промышленными стоками. На заключительном этапе геологического круговорота сера выпадает в осадок в анаэробных условиях в присутствии железа и других металлов и медленно накапливается в виде конкреций или тонкораспыленного вещества в земных недрах.

Промышленное загрязнение приводит к нарушению круговорота серы, так же как и других вышеперечисленных элементов, участвующих в других круговоротах. Дополнительным поставщиком серы в большой круговорот являются теплоэнергетические установки, которые при сжигании минерального топлива выбрасывают сернистый газ.

Атмосфера Земли способна самоочищаться от сернистого ангидрида при выпадении атмосферных осадков: он преобразуется газовыми выделениями растительности или осаждается в форме сульфатных аэрозолей.

Экологическая опасность сернистого ангидрида заключается в том, что при фотохимическом окислении в присутствии диоксида азота и углеводородов сначала образуется серный ангидрид SO3, который соединяясь с водяными парами, превращается в аэрозоли серной кислоты Н2SO4. Продолжительность всего цикла от момента естественных или техногенных выбросов SO2 до удаления из атмосферы паров серной кислоты составляет до 14 суток. С воздушными потоками аэрозоли серной кислоты разносятся на значительные расстояния от источника выброса и выпадают в виде кислотных дождей. Об этом подробнее изложено в разделах, касающих асидификации атмосферы и гидросферы.

Круговорот ртути

Этот редко встречаемый химический элемент очень токсичен. Сильной токсичностью обладают и соединения ртути. В природе ртуть рассеяна в земной коре и очень редко встречается в таких минералах, как киноварь, где она содержится в концентрированном виде. Ртуть участвует в круговороте веществ, мигрируя в газообразном состоянии и в водных растворах.

В атмосферу ртуть поступает из гидросферы при испарении, вместе с вулканическими газами и газами из термальных источников. Часть газообразной ртути переходит в твердую фазу и удаляется из воздушной среды. Выпавшая вместе с атмосферными осадками ртуть поглощается почвенными растворами и глинистыми породами. Ртуть в небольших количествах содержится в нефти и каменном угле (до 1 мг/кг). В водной массе океанов ее количество составляет около 1,6 млрд. т., в донных осадках заключено около 500 млрд. т., а в планктонных организмах находится до 2 млн. т. ртути и ее соединений. Речными водами ежегодно с суши выносится около 40 тыс. т. ртути, что на порядок меньше, чем поступает в атмосферу при испарении.

В результате усилившихся техногенных выбросов в атмосферу и гидросферу ртуть из естественного компонента природной среды, участвующего во всех круговоротах, превратилась в весьма опасный компонент для здоровья человека и живого вещества. Ртуть применяют в металлургической, химической, электротехнической, электронной, целлюлозно-бумажной и фармацевтической промышленности, используют для производства взрывчатых веществ, люминесцентных ламп, лаков и красок. Промышленные стоки и атмосферные выбросы, горно-обогатительные фабрики при ртутных рудниках, теплоэнергетические установки, использующие минеральное топливо, являются главными источниками загрязнения биосферы этим токсичным компонентом. Кроме того, ртуть входит в состав некоторых пестицидов, которые используют в сельском хозяйстве для протравливания семян и защиты их от вредителей. В организм человека ртуть и ее соединения поступают вместе с пищей.

Круговорот свинца

Несмотря на то что свинца в земной коре содержится всего 0,0016%, он присутствует во всех компонентах природной среды. Важнейшим в круговороте свинца является его атмосферно-гидросферный перенос. Находящийся в атмосфере свинец вместе с пылью осаждается атмосферными осадками и начинает концентрироваться в почвах. Растения получают свинец из почв, природных вод и атмосферных выпадений, а животные — при потреблении растений и воды. В организм человека свинец попадает вместе с пищей, водой и пылью.

Основными источниками загрязнения биосферы свинцом являются разнообразные двигатели, выхлопные газы которых содержат тетраэтилсвинец, теплоэнергетические установки, сжигающие каменный уголь, горнодобывающая, металлургическая и химическая промышленность. Значительное количество свинца вносится в почву сточными водами.

У жителей промышленно развитых стран содержание свинца в организме в несколько раз больше, чем у жителей аграрных стран, а у горожан выше, чем у сельских жителей. Увеличение концентрации свинца в природных средах приводит к необратимым процессам в костях и печени людей.

Биосфера — это область распространения живого вещества. В ее истории имеются важнейшие рубежи, свидетельствующие о влиянии на ее развитие и эволюцию различных геосферных факторов. Живое вещество обладает весьма своеобразными экологическими функциями. Важное геоэкологическое значение имеют энергетическая, газовая, почвенно-элювиальная, водоочистная, водорегулирующая, концентрационная, транспортная и деструктивная функции. Биосфера многолика в результате исключительно огромного таксономического разнообразия. Каждый организм или группа организмов в силу своих физиологических особенностей и условий существования способны служить инструментом индикации загрязненности природной среды. В биосфере существует круговорот веществ, которому предшествует геологический круговорот, подготовляющий вещества для жизнедеятельности организмов. Более низкий уровень биосферного круговорота составляет биологический круговорот. В природе существуют круговороты углерода, азота, фосфора, серы, ртути, свинца и других химических элементов и соединений.

Добавить комментарий

Ваш адрес email не будет опубликован.