Современные гипотезы происхождении жизни

Наибольшее признание и распространение в XX столетии получила гипотеза происхождения жизни на Земле, предложенная известным отечественным биохимиком академиком А. И. Опариным (1894-1980) и английским биохимиком Дж. Холдёйном (1892-1964). Суть их гипотезы, сформулированной ими независимо друг от друга в 1924-1928 гг. и развиваемой в последующее время, сводится к существованию на Земле продолжительного периода абиогенного образования большого числа органических соединений. Данные органические вещества насыщали воды древнейших океанов, сформировав (по представлениям Дж. Холдейна) так называемый «первичный бульон». Впоследствии в силу многочисленных процессов локальных обмелений и иссушений океанов концентрация «первичного бульона» могла возрастать в десятки и сотни раз. Эти процессы происходили на фоне интенсивной вулканической активности, частых грозовых разрядов в атмосфере и мощного космического излучения. В этих условиях могло происходить постепенное усложнение молекул органических веществ, появление простых белков, полисахаридов, липидов, нуклеиновых кислот. На протяжении многих сотен и тысяч лет они могли образовать сгустки органических веществ (коацерваты). В условиях восстановительной атмосферы Земли коацерваты не разрушались, происходило их постепенное усложнение, и в определенный момент развития из них могли образоваться первые примитивные организмы (пробионты). Эта гипотеза была принята и развита в дальнейшем многими учеными разных стран, ив 1947 г. английский ученый Джон Бернал сформулировал гипотезу биопоэза. Он выделил три основные стадии формирования жизни: 1) абиогенное возникновение органических мономеров; 2) формирование биологических полимеров; 3) развитие мембранных структур и первых организмов.

Рассмотрим кратко процессы и стадии биопоэза.

Первым этапом биопоэза стал ряд процессов, получивших название химической эволюции, приведшей к появлению пробионтов — первых живых существ. Продолжительность его разными учеными оценивается от 100 до 1000 млн. лет. Это предыстория жизни на нашей планете.

Абиогенный биосинтез органических соединений

Земля как планета возникла около 4,5 млрд. лет назад (по другим данным — около 13 млрд. лет назад, но они не имеют пока веских доказательств). Остывание Земли началось около 4 млрд. лет назад, а возраст земной коры оценивается примерно в 3,9 млрд. лет. К этому моменту образуются также океан и первичная атмосфера Земли. Земля в это время была достаточно разогретой за счет выделения тепла при затвердевании и кристаллизации компонентов коры и активной вулканической деятельности. Вода долгое время находилась в парообразном состоянии, испаряясь с поверхности Земли, конденсируясь в верхних слоях атмосферы и вновь выпадая на раскаленную поверхность. Все это сопровождалось почти постоянными грозами с мощными электрическими разрядами. Позже начинают формироваться водоемы и первичные океаны. Древняя атмосфера Земли не содержала свободного кислорода и была насыщена вулканическими газами, в состав которых входили окислы серы, азота, аммиак, оксиды и двуокиси углерода, пары воды и ряд других компонентов. Мощное космическое излучение и излучение Солнца (озонового слоя в атмосфере еще не было), частые и сильные электрические разряды, активная вулканическая деятельность, сопровождавшаяся выбросами больших масс радиоактивных компонентов, привели к образованию органических соединений, таких, как формальдегид, муравьиная кислота, мочевина, молочная кислота, глицерин, глицин, некоторые простые аминокислоты и т. п. Поскольку свободного кислорода в атмосфере не было, то эти соединения не окислялись и могли накапливаться в теплых и даже кипящих водоемах и постепенно усложняться по строению, формируя так называемый «первичный бульон». Продолжительность этих процессов составляла многие миллионы и десятки миллионов лет. Так осуществился первый этап биопоэза — образование и накопление органических мономеров.

Этап полимеризации органических мономеров

Значительная часть образующихся мономеров разрушалась под действием высоких температур и многочисленных химических реакций, происходивших в «первичном бульоне». Летучие соединения переходили в атмосферу и практически исчезали из водоемов. Периодическое подсыхание водоемов приводило к многократному увеличению концентрации растворенных органических соединений. На фоне высокой химической активности среды происходили процессы усложнения этих соединений, и они могли вступать в соединения друг с другом (реакции конденсации, полимеризации и т. п.). Жирные кислоты, соединяясь со спиртами, могли образовывать липиды и формировать жировые пленки на поверхности водоемов. Аминокислоты могли соединяться друг с другом, образуя все более сложные пептиды. Могли образовываться и другие типы соединений — нуклеиновые кислоты, полисахариды и др. Первыми нуклеиновыми кислотами, как полагают современные биохимики, были небольшие цепи РНК, так как они, как и олигопептиды, могли синтезироваться в среде с высоким содержанием минеральных компонентов спонтанно, без участия ферментов. Реакции полимеризации могли заметно активироваться при значительном увеличении концентрации раствора (пересыхание водоема) и даже во влажном песке или при полном высыхании водоемов (возможность протекания таких реакций в сухом состоянии была показана американским биохимиком С. Фоксом). Последующие дожди растворяли молекулы, синтезированные на суше, и перемещали их с токами воды в водоемы. Такие процессы могли носить циклический характер, приводя к еще большему усложнению органических полимеров.

Формирование коацерватов

Следующим этапом в происхождении жизни стало образовывание коацерватов, то есть больших скоплений сложных органических полимеров. Причины и механизмы этого явления во многом еще не ясны. Коацерваты этого периода представляли еще механическую смесь органических соединений, лишенную каких-либо признаков жизни. В какой-то период времени между молекулами РНК и пептидами возникли связи, напоминающие реакции матричного синтеза белка. Однако до сих пор непонятно, каким образом РНК стала кодировать синтез пептидов. Позже появились молекулы ДНК, которые в силу наличия двух спиралей и возможности к более точному (по сравнению с РНК) самокопированию (репликации) стали главными носителями информации о синтезе пептидов, передавая эту информацию на РНК. Такие системы (коацерваты) уже напоминали живые организмы, однако еще не являлись таковыми, так как не имели упорядоченной внутренней структуры, присущей живым организмам, и не были способны размножаться. Ведь определенные реакции синтеза пептидов могут происходить и в неклеточных гомогенатах.

Появление биологических мембран

Упорядоченные биологические структуры невозможны без биологических мембран. Поэтому следующим этапом в образовании жизни стало формирование именно этих структур, изолирующих и защищающих коацерваты от окружающей среды, превращающих их в автономные образования. Мембраны могли образоваться из липидных пленок, появлявшихся на поверхности водоемов. К молекулам липидов могли присоединяться пептиды, приносимые дождевыми потоками в водоемы или образовавшиеся в этих водоемах. При волнении водоемов или выпадении на их поверхность осадков могли возникать пузырьки, окруженные мембраноподобными соединениями. Для возникновения и эволюции жизни важны были те пузырьки, которые окружали коацерваты с белково-нуклеидными комплексами. Но и такие образования еще не были живыми организмами.

Возникновение пробионтов — первых самовоспроизводящихся организмов

В живые организмы могли превратиться только те коацерваты, которые были способны к саморегуляции и самовоспроизводству. Каким образом эти способности возникли — также пока неясно. Биологические мембраны обеспечили автономность и защиту коацерватам, что способствовало появлению существенной упорядоченности биохимических реакций, протекающих в этих телах. Следующим шагом стало появление самовоспроизводства, когда нуклеиновые кислоты (ДНК и/или РНК) стали не только обеспечивать синтез пептидов, но и с его помощью регулировать процессы самовоспроизводства и обмена веществ. Так возникла клеточная структура, обладающая обменом веществ и способностью к самовоспроизводству. Именно эти формы и смогли сохраниться в процессе естественного отбора. Так коацерваты превратились в первые живые организмы — пробионты.

Закончился этап химической эволюции, и наступил этап биологической эволюции уже живой материи. Произошло это 3,5-3,8 млрд. лет назад. Появление живой клетки — это первый крупнейший ароморфоз в эволюции органического мира.

Первые живые организмы были близки по строению к прокариотам, не имели еще прочной клеточной стенки и каких-то внутриклеточных структур (были покрыты биологической мембраной, внутренние изгибы которой выполняли функции клеточных структур). Возможно, первые пробионты имели наследственный материал, представленный РНК, а геномы с ДНК появились позже в процессе эволюции. Существует мнение, что дальнейшая эволюция жизни пошла от общего предка, от которого произошли первые прокариоты. Именно это обеспечило большое сходство строения всех прокариот, а впоследствии и эукариот.

Невозможность самозарождения жизни в современных условиях

Часто задают вопрос: почему не происходит самозарождение живых существ в настоящее время? Ведь если живые организмы не появляются сейчас, то на каком основании мы можем создавать гипотезы о происхождении жизни в далеком прошлом? Где критерий вероятности этой гипотезы? Ответы на данные вопросы могут быть следующими: 1) приведенная выше гипотеза биопоэза является во многом лишь логическим построением, она еще не доказана, содержит много противоречий и неясных моментов (хотя имеется очень много данных и палеонтологических, и экспериментальных, позволяющих предположить именно такое развитие биопоэза); 2) данная гипотеза при всей своей незавершенности тем не менее пытается объяснить возникновение жизни, исходя из конкретных земных условий, именно в этом и состоит ее ценность; 3) самообразование новых живых существ на современном этапе развития жизни невозможно по следующим причинам: а) органические соединения долгое время должны существовать в виде скоплений, постепенно усложняясь и преобразуясь; в условиях окислительной атмосферы современной Земли это невозможно, они будут быстро разрушены; б) в современных условиях существует множество организмов, способных очень быстро использовать даже незначительные скопления органических веществ для своего питания.

Добавить комментарий

Ваш адрес email не будет опубликован.